
由曲线y=x2-2x和直线y=0,x=1,x=3所围成的平面图形的面积S=(),而由该平面图形绕Oy轴旋转一周所得旋转体的体积V=().

第1题
第2题
试比较下列二重积分的大小:
(1)与
其中D由x轴、y轴及直线x+y=1围成:
(2)与
其中D是以A(1,0),B(,1), C(2, 0)为顶点的三角形闭区域
第3题
在扩大的欧氏平面上,给出了
的欧氏直线在仿射坐标中的方程,求由它确定的射影直线在齐次坐标中的方程,并求出它上面的无穷远点:
(1)x+2y-1=0;(2)x=0;
(3)y=1;(4)3x-2y=0.
第4题
第5题
应用格林公式计算下列第二型曲线积分:
(1)(cosx-y)dx-(2x+siny)dy,其中L为椭圆
沿逆时针方向的一周;
(2)(ycosx-esinx)dx+(xy2+sinx-√(y2+1))dy,其中L为圆x2+y2=1沿逆时针方向的一周;
(3)(x2+y2)dx+(x2-y2)dy,其中L为以点A(1,1),B(3,2),C(3,5)为顶点的三角形的正向边界;
(4),其中L为正方形-1≤x≤1、-1≤y≤1沿逆时针方向的一周;
(5)(ey-yx2)dx+(xey+xy2-2y)dy,其中L为从点A(-a,0)到点B(a,0)的上半圆周x2+y2=a2,y≥0;
(6)其中L是由y=x2和y2=x所围区域的正向边界曲线。
第6题
计算下列曲线积分[曲线的方向与参数增加的方向一致]:
(1)其中l为抛物线y=x2(-1≤x≤1).
(2)其中l为折线y=1-|x-1|(0≤x≤2).
(3)其中c为曲线
第7题
第9题
计算下列三重积分:
(1),其中Ω是两个球:x2+y2+z2≤R2和x2+y2+z2≤2Rr(R>0)的公共部分;
(2),其中Ω是由球面x2+y2+z2=1所围成的闭区域;
(3),其中Ω是由xOy平面上曲线y2=2x绕x轴旋转而成的曲面与平面x=5所围成的闭区域.