
利用高斯公式计算下列第二型曲面积分:(1)(x+yx)dydz+(y+zx)dzdx+(x+xy)dxdy,其中S是由平面x=0,
利用高斯公式计算下列第二型曲面积分:
(1)(x+yx)dydz+(y+zx)dzdx+(x+xy)dxdy,其中S是由平面x=0,y=0,z=0,x+y+z=1所围立体表面的外侧。
(2)x2dydz+y2dzdx+z2dxdy,其中S是锥面x2+y2=z2与平面z=h(h>0)所围立体表面的外侧。
(3)(x3+y2)dydz+y3dzdx+z3dxdy,其中S是上半球面z=
的上侧。
(4)4xzdydz-2yzdzdx+(1-z2)dxdy,其中S为Oyz平面上曲线z=ey(0≤y≤a)绕z轴旋转所成曲面的下侧。
