
xoz坐标面上的直线x=z-1绕z轴旋转而成的圆锥面的方程是()。
A.(x+1)2=y2+z2
B.x2+y2=z-1
C.z2=x2+y2+1
D.(z-1)2=x2+y2

A.(x+1)2=y2+z2
B.x2+y2=z-1
C.z2=x2+y2+1
D.(z-1)2=x2+y2
第2题
利用高斯公式计算下列第二型曲面积分:
(1)(x+yx)dydz+(y+zx)dzdx+(x+xy)dxdy,其中S是由平面x=0,y=0,z=0,x+y+z=1所围立体表面的外侧。
(2)x2dydz+y2dzdx+z2dxdy,其中S是锥面x2+y2=z2与平面z=h(h>0)所围立体表面的外侧。
(3)(x3+y2)dydz+y3dzdx+z3dxdy,其中S是上半球面z=
的上侧。
(4)4xzdydz-2yzdzdx+(1-z2)dxdy,其中S为Oyz平面上曲线z=ey(0≤y≤a)绕z轴旋转所成曲面的下侧。
第4题
第5题
第6题
计算下列三重积分:
(1),其中Ω是两个球:x2+y2+z2≤R2和x2+y2+z2≤2Rr(R>0)的公共部分;
(2),其中Ω是由球面x2+y2+z2=1所围成的闭区域;
(3),其中Ω是由xOy平面上曲线y2=2x绕x轴旋转而成的曲面与平面x=5所围成的闭区域.